The Magnus Representation for Homology Cylinders

نویسنده

  • TAKUYA SAKASAI
چکیده

We study the Magnus representation for homology cylinders as a generalization of the Gassner representation for string links defined by Le Dimet [12] and Kirk-Livingston-Wang [11]. As an application, we give some factorization formulas of higher-order degree invariants defined by Harvey in [9], [10] for closed three dimensional manifolds obtained from homology cylinders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Magnus Representation for the Group of Homology Cylinders

We define and study the Magnus representation for homology cylinders generalizing the work of Kirk, Livingston and Wang [KLW] which treats the case of string links. Using this, we give a factorization formula of Alexander polynomials for three dimensional manifolds obtained by closing homology cylinders. We also show a relationship between the Gassner representation for string links and the Mag...

متن کامل

The Magnus Representation and Higher-order Alexander Invariants for Homology Cobordisms of Surfaces

The set of homology cobordisms from a surface to itself with markings of their boundaries has a natural monoid structure. To investigate the structure of this monoid, we define and study its Magnus representation and Reidemeister torsion invariants by generalizing Kirk-Livingston-Wang’s argument over the Gassner representation of string links. Moreover, by applying Cochran and Harvey’s framewor...

متن کامل

Infinite generation of the kernels of the Magnus and Burau representations

Consider the kernel Magg of the Magnus representation of the Torelli group and the kernel Burn of the Burau representation of the braid group. We prove that for g ≥ 2 and for n ≥ 6 the groups Magg and Burn have infinite rank first homology. As a consequence we conclude that neither group has any finite generating set. The method of proof in each case consists of producing a kind of “Johnson-typ...

متن کامل

Abelian Quotients of Monoids of Homology Cylinders

We discuss abelian quotients of monoids of homology cylinders of a surface, each of which consists of a compact 3-manifold as a homology cobordism between two copies of a surface and markings of the boundary. We show that both of the monoid of all homology cylinders and that of irreducible homology cylinders are not finitely generated and moreover they have big abelian quotients. The proof is g...

متن کامل

Homology Cylinders and the Acyclic Closure of a Free Group

We give a Dehn-Nielsen type theorem for the homology cobordism group of homology cylinders by considering its action on the acyclic closure, which was defined by Levine in [13] and [14], of a free group. Then we construct an additive invariant of those homology cylinders which act on the acyclic closure trivially. We also describe some tools to study the automorphism group of the acyclic closur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005